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Numerical Simulation of Chromatographic Band Profiles
at Large Concentrations: Length of Space Increment
and Height Equivalent to a Theoretical Plate

BINGCHANG LIN and GEORGES GUIOCHON

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TENNESSEE 37996-1600;

DIVISION OF ANALYTICAL CHEMISTRY
OAK RIDGE NATIONAL LABORATORY
OAK RIDGE, TENNESSEE 37831-6182

Abstract

It is shown that the numerical integration of the system of partial differential
equations accounting for the idea model of chromatography provides the band
profiles observed with a column of finite efficiency if the space length increment
of the integration is chosen equal to the column HETP for a zero sample size and
the time increment is then chosen so that the Courant number is 2.

INTRODUCTION

In a recent paper, Rouchon et al. (/j discussed the numerical
integration of the system of mass balance equations which accounts for
the behavior of a large concentration band in a chromatographic
column. The comparison between the profiles predicted by their
calculations and the profiles recorded experimentally showed good
overall agreement, especially for the largest samples used, but poor
rendition of the small or very small samples, the band width of the
theoretical profiles being about 40% larger than the width of the
experimental ones. Furthermore, their program had no feature permit-
ting an easy adjustment of the efficiency of the simulated column.
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It was suggested, however, that carrying out the numerical integration
with a space increment equal to the height equivalent to a theoretical
plate (HETP) of the column for an extremely small concentration (linear
chromatography) should give correct results (/).

In a more recent paper, Golshan-Shirazi et al. (2) reported the
simulation of single solute bands on a chromatographic column and
obtained profiles which are Gaussian for very small sample sizes and
have a standard deviation corresponding to the HETP of the simulated
column, provided the length of the space increment is taken equal to the
column HETP. Simulated elution profiles using this program are in
excellent agreement with those observed experimentally (3). Unfortun-
ately, there is no justification for this choice, which appears so far to be
empirical. This could be a serious problem, because the lack of an
understanding of the relationship between the space length of the
integration increment and the band smoothness casts some legitimate
doubt on the validity of the profiles generated by calculating numerical
solutions of the system of partial differential equations of chromatogra-
phy, especially at large concentration loadings where the profiles become
extremely steep.

We present here a demonstration of the validity of the choice made in
the work by Golshan-Shirazi et al. (2, 3) and in other work dealing with
the simulation of the separation of binary mixtures (4-7).

I. THE SYSTEM OF EQUATIONS OF CHROMATOGRAPHY

The solution of the chromatographic problem, i.e., the prediction of the
band profiles in the most general case, can be obtained by writing a
system of equations accounting for the mass balances of all the chemical
species involved and the kinetics of their mass transfer betwen phase
boundaries.

1. Mass Balance Equations

The mass balance equation of Compound i in a slice of column is
written (/)

oC, , p9C, ,  3C,

Jt dt 0z 0z? (1)
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where F = the phase ratio ((1 — €)/g)
C,., C, = the concentration cf the solute in the mobile and the
stationary phase, respectively
u = the linear velocity of the mobile phase, assumed to be
constant
D = the coefficient of molecular (axial) diffusion

There is one equation like Eq. (1) fcr each compound involved in the
experiment, whether a component of the sample studied or of the mobile
phase. In order to simplify the system, we may take the convention that
the solvent, or the weak solvent in the case of a mixed mobile phase, is
not adsorbed (8). Since liquids are not compressible and the difference
between the partial molar volumes in the mobile and the stationary
phases is very small, there is no need for a mass balance equation of the
weak solvent. But a mass balance equation is certainly needed for each
other component of the mobile phase.

The system of mass balances (Eq. 1 for each compound) is the
fundamental part of the chromatographic model. It needs to be com-
pleted by a relationship between the concentrations in the mobile and
stationary phases or their differentials by respect to time to permit the
derivation of a solution of the system.

2. Mass Transfer Kinetics

It is difficult to write a proper relationship between the time differential
of the concentration of the Compound i in the stationary phase, the
experimental parameters, and the local values of its concentrations in
both phases. Different models may be assumed to account for the mass
transfer, depending on the nature of the problem (9). The most simple
such equation is

oC
ot

t= ~K(C; = f(C) (2)

where K = a kinetic constant
f(C,,) = the isotherm equation, i.e., it gives the concentration of the
corresponding compound in the stationary phase in
equilibrium with a concentration C,, in the mobile phase

In the case of a multicomponent problem, the isotherm for each
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compound is a function of the concentration of all of them in the mobile
phase.

The system of partial differential equations obtained by combining
Egs. (1) and (2) written for each compound involved is complex and has
not yet received any solution. Preliminary results indicate that a
numerical solution may be possible (9).

3. The Ideal Model

In most applications of chromatography, however, the mass transfer
between phases is extremely fast and these phases are never far from
being at equilibrium. We may assume, as a first approximation, that there
is constantly equilibrium between the mobile and the stationary phases.
This means that the column has an infinite efficiency. Radial mass
transfer proceeds at an infinite rate, while axial diffusion proceeds at a
zero rate, even when the concentration gradient is infinite. This is the
“ideal” model of chromatography (/0-12). In this case the mass balance
equation becomes

of\oC  ,0C
(1+Fac> S tua =0 (3)

where f'is the isotherm equation and C is the concentration in the mobile
phase.

It is interesting to observe that a true solution of the system made of Eq.
(3) (one for each compound involved, plus a competitive isotherm,
C, = f(C,,, 1)) should exhibit concentration discontinuities or shocks (12),
because Eq. (3) can propagate these shocks. Nevertheless, a numerical
solution of this system does not exhibit true ideal shocks, but very steep
segments of the profiles instead (2-7). This is due to the smoothing effect
of numerical integration and had already been observed by Rouchon et
al. (1) and by others (2-7). A shock could be obtained only if infinitely
small values of the space and time integration increments could be used.
This in turn would require an infinite computer time, clearly an
unacceptable proposition.

We want to emphasize at this stage, however, that we do not need a
solution of the system of equations of the ideal model, since it is an
approximation. On the contrary, if we could relate the smoothing effect of
the finite character of the integration elements to the effects of a finite rate
of mass transfer and of molecular diffusion on strong concentration
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gradients, we might be able to obtain an approximate solution of the sys-
tem of Egs. (1) which would be closer to the exact solution of the prob-
lem than an exact solution of the system of Eqs. (3) with the cor-
responding isotherms.

4. The Semi-ldeal Model

A reasonable alternative assumption could be to write that the rate of
mass transfer does not change with concentration. We know that in the
range of concentration used in preparative liquid chromatography (up to
5% w/w maximum), the diffusion coefficients do not change much with
concentration. In other words, we can assume that the kinetics of mass
transfer is accounted for by an apparent diffusion coefficient, D,, (I3)
such that

[6)? = 2D,ty = HL “4)

where [6] = the standard deviation of the band of a very small sample
(Gaussian band observed in linear chromatography)
t, = the retention time of a nonretained compound
H = the conventional HETP, which is nearly independent of k&’ for
a given column
L = the column length

D,, or the height equivalent to a theoretical plate, H, which is another
expression of the kinetics of mass transfer, is constant during the
experiment because the molecular diffusion coefficients do not vary
much with concentration in the range investigated in preparative liquid
chromatography.

Equation (1) and the corresponding kinetic equation can be replaced
by a combination of

apyac, o, e
(HFac o T4 “ P )

and the isotherm, as given by Eq. (3).

The aim of this work is to relate the error made on the profile
determined by numerical integration of the system of Egs. (3) to the term
in the RHS of Eq. (5).
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5. Boundary Conditions

We take the classical conditions of elution chromatography. At time
t =0 the column contains only the mobile phase, ie, a constant
concentration of those compounds which belong to it. The sample
concentration is zero. At the origin of the column (z = 0) we assume that
the concentration of the sample is zero, except during a well-defined
period of time of finite duration, during which it is given by a continuous
function which is digitized to satisfy the requirements of the program. In
the simple case of a pulse injection, the concentration is different from
zero only during one time increment, t, and the sample size is equal to
the product of v and the concentration of the pulse (and by the mobile
phase flow rate, for reasons of homogeneity of the equations).

Il. NUMERICAL INTEGRATION

We briefly describe the algorithm used and then discuss the errors
introduced by the numerical procedure during the calculation of the
profiles.

1. The Explicit Type

We replace the continuous part of the (z, ) plane where the solution is
defined by a grid having intervals equal to T and 4 in the time and space
domains, respectively (/). We calculate successively the value of the
concentration C(n, j) at each point (n, j) of the grid, starting from the
points on the time and space axis for which we know the solute
concentrations from the boundary conditions.

We can rewrite Eq. (3) as

oC oC _
with
B=1/u,

and
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u

== (7
of
1+ F3%

U,

The numerical algorithm used to derive a solution to the system of partial
differential equations described above, using the finite difference method
discussed by Rouchon (7), is given by the following equation (1, 5, 7):

g -q
h

+BCJ"'_C;n—l

=0 (8)

where t = the time integration increment
h = the space length integration increment
C} = the concentration at the point (nh, jt) of the grid

The definition chosen for the derivation of Eq. (8) corresponds to the
explicit type (14).

2. The Courant Condition

The numerical values of the space length and time increments in Eq.
(8) cannot be chosen independently but must satisfy a certain relation-
ship in order for a stable solution to be obtained (1, 14).

In the linear case, if the concentration C} at the point (n, j) of the grid is
given by

C! = A} exp (ijkr) 9)
where i’ = —1 and k is an integer, we obtain
A=1-a'+a'exp(—ikr) (10)

where a = u,t/h is the Courant number.
In order to obtain stable results, we must make sure that the time and
space length increments are selected in such a way that

Ml <1 (10a)

This requires that 0 < 1/a < 1 ora > 1. We have chosen a value of a equal
to 2.
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In the nonlinear case we have (/)

Slép al(c) <1 (10b)
or
——inf
hC 12 u,(c)>1 (10¢)

For any convex function, such as a Langmuir isotherm, inf u, =
u/(1 + FG), where G is the first-order derivative of fat C = 0 (i.e., k).

3. Artificial Dissipation Coefficient
The use of Eq. (8) to replace Egs. (6) and (7) entails an error which can

be estimated in a first approximation by using Taylor expansions of the
concentration (/4):

tl _ o ac) h? (ac) o
Cr C+h(az _,+2 &) * (11)
and
acC 0’C
L - no_ .
Cri=Cr r( a:) ey (a:) + (12)

From Eq. (6) and since in a linear approximation B is constant, we can
derive

9’C - g 9C 9:'C

Fra or? (13)

Combination of Egs. (8) and (11)-(13) gives
g -c L G-C

+B
h (9°C aC T ycy
E(a ),+B< a:) 2B (622, (14)

h T

_(acy
—(az)j+
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Comparing Egs. (8) and (14) gives

aC |, oC azc
5 +B—a——— DS (15)
or
+ af) + a_C__ - ic
<1 Foc) ot % b (16)

The RHS of Eq. (16) is an artificial dissipation term. The artificial
dissipation coefficient is

hu
D, —2—(a— 1) a7

The first factor of Eq. (17) (hu/2 = hi/2t,) is best approximated by the
apparent diffusion coefficient defined in Eq. (4), assuming that the
column efficiency is constant.

4. Space Length Increment and HETP
The HETP in linear chromatography is classically defined by the

second relationship in Eq. (4). Accordingly, it is equal to 2D,,/L, i.e., to
2D, /u. Thus, if we take

h=H (18)
and
T= 2H (19)
u,

we have a Courant number, a, equal to 2. Then, from Eq. (17), the
artificial dissipation coefficient becomes equal to the apparent diffusion
coefficient. Numerical calculations supply an approximate solution of
Eq. (3) which is a correct solution of Eq. (5). i.c., an approximate solution
of Eq. (1), the fundamental equation of chromatography. The kinetics of
mass transfers between phases has been accounted for by a combination
between an equilibrium isotherm and a global, apparent diffusion
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coefficient. This has been called the semi-ideal model (4). The numerical
solutions exhibit self-sharpening profiles for large concentrations, char-
acteristic of “overloaded” chromatographic columns. In fact, the ap-
parent diffusion coefficient is different from the coefficient of the
corrective term actually introduced by the numerical integration. The
former follows a mass conservation law and transfers masses from the
high frequency to the low frequency domain of the column response
spectrum. The latter is a dissipative coefficient, which smoothes the
profiles obtained, but the effect on the profile is similar.
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